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ABSTRACT
The generation of ground-movement maps using interfero-
metric SAR is subject to faults during the acquisition and
prepossessing of SAR data. This paper addresses the task
of identifying and localizing such faults specifically within
the context of data provided by the European Ground Mo-
tion Service (EGMS). The lack of a regular spatial domain in
geospatial data poses a challenge for signal processing and
machine learning. Here, we investigate graph-based methods,
that overcome the spatial irregularity of the data, to perform de-
tection and localization of data anomalies. We demonstrate on
synthetic data that graph-based frequency analysis and filter-
ing yield superior performance at anomaly localization when
compared to state-of-the-art machine-learning methods such
as graph U-nets. The proposed methods are employed for
anomaly detection and localization on real EGMS data.

Index Terms— InSAR, graph, fault detection

1. INTRODUCTION

The monitoring of ground movement is a critical task with
strong implications for various applications, from urban plan-
ning to environmental monitoring and human safety [1]–[5].
The advent of interferometric synthetic aperture radar (InSAR)
technology has revolutionized our ability to remotely sense
and measure ground deformations with unprecedented preci-
sion [6]–[8]. However, generating a ground-movement map
from satellite SAR images poses challenges, from acquisition
to processing, such as atmospheric effects, surface changes,
noise, and imperfect phase unwrapping [6]. These challenges
can lead to anomalies in ground-movement maps.

In particular, we investigate the InSAR-based European
ground motion service (EGMS), which provides Europe-wide
ground-movement maps [8]. The EGMS uses images from the
Sentinel-1 satellites, under the Copernicus earth-observation
program of the European Commission. The dataset consists
of time series scattered over Europe, with an irregular spatial
distribution. This limits the usage of signal processing and
machine learning when tackling the spatial dimension.

This work was supported by the European Space Agency under the project
DARIO within the PRODEX program.

Autoencoders receive increasing attention for anomaly de-
tection [9]–[12], while state-of-the-art methods for dealing
with irregularly-spaced data are built upon graphs, such as
graph neural networks (GNN) [13] and graph signal process-
ing (GSP) [14]. Graph autoencoders and graph U-nets yield
state-of-the-art performance in spatial-anomaly detection [15]–
[18]. However, they require intensive training of the model
parameters for every data instance.

We propose GSP-based approaches for spatial anomaly
detection which achieve competitive performance at reduced
computational burden when compared to autoencoders. These
approaches use the spatial structure of the data as a graph
in order to provide a spatial-frequency representation of the
data [19], [20], allowing for the identification of anomalous
nodes. Moreover, GSP does not rely on data-based training.

In Section 2, we describe the anomaly detection problem
in the EGMS dataset. A solution using graph U-nets is pre-
sented in Section 3. In Section 4, we introduce two GSP-based
approaches, the weighted graph-spectral energy and the high-
pass graph filters. Experiments to assess the performance
of these algorithms are presented in Section 5, and we the
conclusion to this work is given in Section 6.

2. EGMS DATASET

The EGMS dataset comprises a collection of time series, with
each series detailing the cumulative displacement of a ground
patch [8]. Hereafter, each patch of ground will be referred to
as a “pixel”. Temporal resolution is 6 days and spatial reso-
lution is approximately 5× 20 meters. When processing the
data to identify faulty pixels, the spatial dimension plays an
important role. Under the given resolution, ground movement
is expected to be smooth so that healthy pixels are similar to
their neighbors. Therefore, our goal is to detect anomalies by
pinpointing pixels that deviate from their neighboring coun-
terparts, as shown in Fig. 1. It should be noted that regions
where all pixels are in subsidence or uplift are common in the
dataset. This means that individual analysis of a pixel’s time
series, for example employing a threshold on the time series,
is not enough to indicate fault. Therefore, the spatial relation
between a pixel and its neighbors must be considered.
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Fig. 1. Example of a faulty pixel and its neighborhood. Ground
displacement signals (left) and pixel positions (right).

While pixel locations are fixed throughout the entire ob-
servation period, their spatial distribution does not adhere to
a regular grid, meaning that conventional spatial signal pro-
cessing techniques such as two-dimensional signal processing
and convolutional networks cannot be directly applied. In this
work, we evaluate and propose graph-based anomaly detection
methodologies that consider the irregular pixel distribution.

The proposed methodologies assign a fault score to each
pixel in the dataset, which represents the relative likelihood
that a node is faulty. Nodes with higher scores are more likely
to be faulty than nodes with lower scores. Anomaly detection
is performed by defining a threshold τ , and labeling nodes for
which the fault score exceeds τ as faulty. The choice of τ is
application-dependent and determines the trade-off between
true positives and false positives. If labels are known for a
portion of the dataset, τ can be learned from the data. In unsu-
pervised fault detection, τ is often determined heuristically.

3. FAULT DETECTION VIA GRAPH U-NETS

U-nets are a class of autoencoders that have been previously
exploited for fault detection in univariate scenarios [16]. A
U-net adopts an autoencoder structure (encoder-decoder pair)
with the addition of skip connections.

The encoder performs a contracting mapping E : X → Z
from the input space X into the lower-dimensional latent space
Z . The contraction happens over the data features. The ex-
pansive decoder D : Z → X reconstructs the input data from
the latent representation. In other words, the autoencoder
learns in Z a compressed representation of the data. In con-
ventional autoencoders, encoder and decoder are independent
and do not communicate besides the latent space bottleneck.
Skip connections allow for information transfer between these
blocks. Consequently, in U-nets, the decoder depends on the
encoder. Graph U-nets take a graph structure that captures in-
terconnections between data points as extra input, and work by
contracting data also in the spatial dimension, pooling nodes
from the graph to create the latent space. This allows for appli-
cations with univariate data [16]–[18]. In the decoding stage,
the skip connection is used such that previously pooled nodes
are put back into the graph allowing for spatial reconstruction.

Fig. 2. Example of graphs generated from InSAR-based
ground-movement maps. Each node represents a pixel in the
EGMS dataset for a small urban area.

Training the U-net means learning E and D that minimize
the reconstruction error, given by the mean squared error be-
tween input and reconstructed signals. Anomaly detection
uses this error as fault score. This methodology exploits the
fact that the latent space captures the dominant characteristics
of the data, while struggling to capture abnormalities, such
that the reconstruction error of each node is an indicator for
anomalies [11], [12]. Training needs to be done separately for
each set of pixel values, for example, every timestamp of the
EGMS dataset.

4. FAULT DETECTION VIA GSP

A graph G = {V, E} is a structure composed by a set of nodes
V = {v0, . . . , vN−1} and a set of edges E where the generic
element ei,j describes the connection between nodes vi and
vj . In the case of InSAR data, a graph can be constructed such
that each node corresponds to a ground location in the dataset,
as in Fig. 2, and edges can be constructed with a similarity
function, e.g. physical proximity between nodes. A vector
x = [x(0), x(1), . . . , x(N − 1)] of measurements of all N
nodes at a given time instant is called a graph signal.

GSP provides a framework for processing spatial signals
using the extra information given by the graph edges. Let
A ∈ RN×N be the adjacency matrix that stores the edge val-
ues, such that the (i, j)th element of A, Ai,j = ei,j . The
graph Laplacian is defined as L = D − A, where the de-
gree matrix D is a diagonal matrix whose elements Di,i =∑

j Ai,j . The graph Fourier transform (GFT) takes a graph
signal x ∈ RN into the graph-Fourier domain through the op-
eration x̂ = UTx, where x̂ ∈ RN represents the transformed
signal and U is an orthonormal matrix whose columns un

are the eigenvectors of L, with L = UΛUT [19], [20]. The
diagonal matrix Λ collects the graph eigenvalues λn, which
correspond to graph frequencies. With the GFT, we are able to
study the spatial-frequency composition of the InSAR data.

4.1. Weighted Graph-spectral Energy

The conventional GFT provides the spectral decomposition
of the entire graph signal. If different regions of the graph
have specific, localized behaviors, these may be masked by the
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general or predominant behavior of the signal when observed
in the frequency representation. The windowed GFT (WGFT)
allows for spatially-localized frequency analysis by applying a
selective window to the graph signal and then the GFT [21].
This generates a graph spectrogram S ∈ RN×N given by

S(m, k) =
∑
n

x(n)hm(n)uk(n), (1)

where hm is the window centered on the mth node. A graph
window can be defined in different forms, for example, de-
caying exponential window in the spectral domain given by
ĥ(k) = Ce−λkδ , where C is a scaling constant and the decay
factor δ determines the window bandwidth [21]. In the spectral
domain, the centered version is given by ĥm = ĥ⊙um, where
um is the mth row of U [21].

The concept of using the WGFT for fault detection relies
on studying the frequency representation on each node. There-
fore the spectrum S(m, k) must be collapsed into a single
fault score for each m. A straightforward approach found in
the literature is to select the frequency λk where S(m, k) is
maximum for each m [22]. However, in regions where there
is small non-faulty ground movement and signal energy is low,
noise can be wrongly defined as fault. To provide robustness
against noise, we propose instead the weighted spectral energy
(WSE) as a fault score, given by WSEm =

∑
k S

2(m, k)λk.
The windowing process modifies the frequency content of

the signal to be analyzed. Intuitively, this can be observed by
studying a signal x that has a constant value c across a large
region of the graph around m. The fault score should be close
to zero as there is no spatial variation in that region. However,
the windowed signal with samples x(n)hm(n) assumes the
value chm(n) around m, meaning that the spectrum will reflect
the window’s frequency representation. With this, unwanted
artifacts will be present in the scores. As a workaround, we
propose to use a high-pass weighted spectral energy to avoid
the frequency content added by the window, such that

WSEm =
∑

k>kcut

S2(m, k)λk, (2)

where kcut is the index of the cut graph-frequency λkcut
.

4.2. Graph Filters

Graph filtering provides another GSP-based approach for fault
detection. An ideal graph filtering operation is given by [19]

x̃ = UΣFU
Tx, (3)

where x̃ is the filtered signal and ΣF is a diagonal matrix with
diagonal entries ΣFi,i

= 1 if i ∈ F and 0 otherwise. The
operation in (3) first takes the GFT of x. Then it selects the
desired frequency components and computes the inverse GFT.
A high-pass filter has elements of F corresponding to k such
that λk > λhp where λhp is the cut frequency.

Suppressing low-pass regions of the graph signal means
that the filtered signal will have small values where there are no
strong variations in the signal. Where variations are present,
inducing high frequencies, the value of the signal will be
maintained after removal of the DC level and low frequencies
in that area. Therefore, the filtered signal is an indicator of
large variations in the graph data and can be used as a fault
score. It is also resilient to noise as signal energy increases.

A graph filter does not depend on the graph signal, i.e.,
the data. It needs only to be constructed for each different
graph, and can then be applied to any graph signal defined
on top of such graph. Moreover, efficient implementations to
approximate the graph filter HF ≈ UΣFU

T are available in
the literature, using, for example, Chebyshev polynomials [23].

Similar to (2), computing x̃ using a high-pass filter defines
a fault score that captures large variations of the graph signal.
In this case, instead of scaling with the spectral energy of the
windowed graph signal, the fault score scales the with the
original signal value on each node.

5. EXPERIMENTS

In this section, we first evaluate and compare the performance
of the different methodologies for fault detection using artifi-
cial data. Later, we employ graph filters to detect faults in the
municipality of Porsgrunn, in Norway.

5.1. Artificial data

The EGMS dataset is unlabeled, which means that there is
no ground truth regarding which pixels are faulty. Therefore,
experiments to compare the different methodologies are con-
ducted using artificial graphs and data. The datasets are con-
structed in two different ways: randomly distributed pixels and
distribution of pixels that emulate real EGMS dataset. These
datasets will be referred to as random and synthetic datasets,
respectively. Pixels are connected to neighbors within a given
radius r. Edges are Ai,j = e−d(i,j))2/2σ2

, where d(i, j) is
the distance between pixels and σ is the standard deviation.
Healthy data is generated to be smooth across the graph, while
anomalies are introduced as pixels that deviate from their
neighborhood. We use the implementation of graph U-net
available in the PyTorch geometric python library. Due
to lack of space and for reproducibility, further details on
simulations, including dataset generation, can be found in
github.com/vitor-elias/igarss2024/.

Detection performance is measured as the area under the
curve (AUC) of the receiver operating characteristic (ROC).
The ROC curve delineates the trade-off between true positives
(correctly identifying a faulty pixel) and false positives (erro-
neously classifying a healthy pixel as faulty) across varying
detection thresholds τ . For both datasets, we vary the number
of nodes from 5 to 200. Up to 5% of the nodes are defined
as faulty pixels. Faults are added as offsets proportional to
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Table 1. AUC values using the random dataset with different
graph sizes. A star * denotes experiments with larger faults.

5 10 25 50 100 150 200

u-net 0.50 0.50 0.61 0.69 0.77 0.80 0.81
wse 0.18 0.41 0.61 0.64 0.66 0.63 0.61
filter 0.51 0.51 0.58 0.67 0.77 0.83 0.86
u-net* 0.51 0.52 0.69 0.79 0.87 0.90 0.92
wse* 0.19 0.42 0.65 0.72 0.74 0.72 0.69
filter* 0.51 0.53 0.64 0.77 0.87 0.92 0.94

Table 2. AUC values using the synthetic dataset with different
graph sizes. A star * denotes experiments with larger faults.

5 10 25 50 100 150 200

u-net 0.49 0.55 0.64 0.71 0.78 0.81 0.83
wse 0.50 0.52 0.56 0.61 0.68 0.70 0.74
filter 0.49 0.54 0.64 0.73 0.84 0.87 0.90
u-net* 0.50 0.58 0.72 0.81 0.88 0.91 0.92
wse* 0.50 0.53 0.61 0.67 0.75 0.78 0.81
filter* 0.50 0.57 0.70 0.81 0.90 0.92 0.95

the peak-to-peak value of the healthy signal. This value is
randomly selected from the range of 0.05 to 0.15 (or 0.1 to
0.2 in a different experiment). For each graph size, 50 differ-
ent graphs are generated, each time using 20 different graph
signals. Hyperparameters are trained in similar datasets using
Bayesian search from the optuna library [24].

The AUC is computed using all signals for each graph,
and the average AUC for each graph size is shown in Tables 1
and 2. Results show that graph filters yield superior overall
performance than both WSE and graph U-nets, mainly as the
graph size increases. For small graphs, all methodologies
fail to properly detect faults. As the graph size decreases,
the performance of GSP-based approaches diminishes since
graph-frequency resolution is directly tied to the number of
nodes. Moreover, in the case of WSE, the windowing process
becomes challenging for small graphs. For the graph U-net,
it becomes harder to distinguish normal and abnormal char-
acteristics of the data since there are not enough samples to
define the dominant features in the latent space Z . We high-
light that GSP-based methodologies are computationally less
demanding, requiring approximately 1/5 of the time used by
graph U-nets in the simulations. Furthermore, hyperparameter
tuning is notably simpler, involving only 1 hyperparameter for
graph filters (λhp), 2 for WSE (δ and kcut), and 6 for graph
U-nets [16].

5.2. Real data

We use graph filters to localize faulty pixels in the city of
Porsgrunn, in Norway, [59.10, 59.20]◦N× [9.55, 9.74]◦E [25].
This portion of the 315th largest Norwegian city, by area, con-

Fig. 3. Example of faults detected in real dataset and detail of
five faulty pixels and their neighbors within a 15 m radius.

tains 129,365 pixels, with 278 observations over time, show-
casing the need for an automated fault detection framework.

EGMS data are cumulative, with recent samples describ-
ing the total movement of the pixel since the beginning of the
observation period. Therefore signal energy increases with
time and the detection threshold needs to be adjusted to accom-
modate increasing fault scores. We employ a straightforward
heuristic to determine if a pixel is deemed faulty: at each times-
tamp, we assume that a relatively small subset of the pixels
is faulty and classify as anomalies pixels that rank among the
top 0.005% fault scores at that timestamp. Pixels classified as
anomalies in more than 60% of the timestamps are deemed
faulty to mitigate the effect of outliers.

Out of all pixels present in the dataset, 509 pixels were
classified as faulty, shown in Fig. 3. Inspection of the faulty
pixels shows behavior similar to that shown in Fig. 1, in some
cases with exploding uplift and sometimes with exploding
subsidence. No clear correlation between geographical regions
or events and the faulty pixels is observed. With the automated
detection of these pixels, the EGMS dataset can be improved
to treat these cases, and further data analysis can avoid outliers
that hinder the performance of machine learning algorithms.

6. CONCLUSION

This work showed that graph-based methods can be success-
fully employed for the task of anomaly detection in geospatial
data, in particular when data is irregularly distributed over
space. Three different approaches were presented and tested in
synthetic data that emulates the EGMS InSAR dataset. Com-
paring against graph U-nets, an adaptation of autoencoder-
based methods currently employed in the literature, we showed
that fault detection using spectral energy yields competitive
results, while better fault detection and localization can be
achieved through graph filters. It is worth highlighting that
graph filters achieve better detection performance at lower
computational burden and without the need of model training,
required by graph U-nets. Finally, we discuss a methodology
for employing graph filtering in practice and showcase the
fault detection process using real data from the EGMS dataset.
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